Feasibility of Training an AGI using Deep RL:
A Very Rough Estimate

Baeo Maltinsky Jack Gallagher Jessica Taylor
March 24, 2019

1 Introduction

Several months ago, we were presented with a scenario for how artificial general intelligence
(AGI) may be achieved in the near future. We found the approach surprising, so we attempted
to produce a rough model to investigate its feasibility. This document presents the model and its
conclusions.

The usual cliches about the folly of trying to predict the future go without saying and this
shouldn’t be treated as a rigorous estimate, but hopefully it can give a loose, rough sense of some
of the relevant quantities involved. The notebook and the data used for it can be found in the
Median Group numbers GitHub repo if the reader is interested in using different quantities or
changing the structure of the model. If the reader is interested in a more general approach based
on the rate of theoretical progress, see our Insights model.

To briefly explain the proposal:

¢ Create a simulated world somewhat similar to our world (i.e, containing space-time, mate-
rial, programming, multiple agents, etc).

¢ Simulate many agents, each with an amount of computing power equal to the human brain.
These agents interact in a manner similar to that of evolution; the most fit survive and re-
produce.

¢ At the end, a collection of the most fit individuals are given data about our world and asked
to solve problems for rewards (this is really not a good way to do Al alignment but can
plausibly produce misaligned AGI).

This does not take into account:

serial vs. parallel training

FLOPS vs. other considerations (memory, TEPS, latency)

breakdown of exponential price performance improvement

costs associated with things other than a subset of the training hardware (there are many

others)

time required to develop software

¢ difficulty of creating and running a simulated world

¢ paradigm shifts in Al (e.g. no longer doing reinforcement learning) that would make this
scenario irrelevant

¢ whether “difficulty ratio” relative to Go makes sense (it probably doesn’t except in the loos-

est sense)

https://github.com/Median-Group/numbers
http://mediangroup.org/insights

1.1 A Note about Uncertainty and Distributions

Much of the challenge associated with modelling this scenario derives from the difficulty of esti-
mating (or even bounding) many of the parameters. When possible, we use distributions or values
corresponding to commonly accepted quantities. In the cases where there are no such quantities,
we attempt to construct reasonable distributions with very wide bounds to reflect the uncertainty.

If reasonable confidence bounds can be established (these terms are meant loosely), we will
use a generally log-uniform distribution.

In [61]: Jmatplotlib inline

import matplotlib

import numpy as np

import pandas as pd

from matplotlib import pyplot as plt
import seaborn as sns

from IPython.display import display, HTML
import warnings

Suppress Pandas plotting error
warnings.filterwarnings("ignore")

plot aesthetics
sns.set()

number of samples for Monte Carlo simulation
n = 50000

summary table of distribution

def summary(data, unit='"'):
Returns Pandas dataframe summarizing distribution of data with percentiles
Mostly for convenience

Paramaeters
data : array_like

Input array or array-like object
unit : str

Units associated with data

Returns

out : pandas.DataFrame
mnimn

percentiles = [1, 5, 25, 50, 75, 95, 99]
values = np.percentile(data, percentiles)

http://ecolego.facilia.se/ecolego/show/Log-Uniform%20Distribution

df = pd.DataFrame(data={"Percentile": percentiles, unit: values})
df = df.concat(["Mean", np.mean(data)])
return df [["Percentile", unit]]

log-uniform distribution
def loguniform(low=0, high=1, size=None):

nnn

Returns loguniform distribution bounded by low and high orders of magnitude.

Parameters

low : float, optional
Order-of-magnitude lower boundary of the output interval.
All values generated will be greater than or equal to low.
The default wvalue s 0.

high : float, optional
Order-of-magnitude upper boundary of the output interval.
A1l values generated will be less than high.
The default wvalue s 1.

size : int or tuple of ints, optional
Output shape

Returns
out : ndarray or scalar
samples from the loguniform distribution

nnn

return 10**np.random.uniform(low, high, size)

1.2 Computational Performance of the Brain

The computational performance of the brain will be estimated in operations per second. This is a
convenient but incredibly flawed approach. Sandberg and Bostrom (2009) contains a summary of
estimates from the literature:

* Tuszynski (2006): 10%® FLOPS

e Kurzweil (1999): 2 x 10'® FLOPS

e Thagard (2002): 10® FLOPS

* Bostrom (1998): 10! operations per second

» Merkle (1989): 2 x 10% operations per second

» Merkle (1989): 10'3 operations per second

* Dix (2005): 10 synaptic operations per second

* Seitz (2007): 2 x 10'® synaptic operations per second (note: the Bostrom paper incorrectly reports
this as 2 x 1012, see the original)

 Malickas (1996): 10'¢ synaptic operations per second

Martins et al. 2012 offers a few more estimates:

* Moravec (1998): 10" FLOPS

http://mediangroup.org/brain1.html
http://mediangroup.org/brain1.html
https://www.fhi.ox.ac.uk/brain-emulation-roadmap-report.pdf
http://hiqnews.megafoundation.org/The_Great_Gray_Ravelled_Knot.htm
https://repositorium.sdum.uminho.pt/bitstream/1822/20756/1/NanoroboticBrainMonitoring2012_%20draft%20with%20page%20numbers.pdf

* Sarpeshka (1998): 3.6 x 10'° synaptic operations per second

The estimates from Tuszynski (2006) and Thagard (2002) are derived from speculations about
quantum computation occurring in the brain. As this is usually regarded as biologically implau-
sible, they will be excluded from the data set.

Note: the smaller estimate by Merkle (1989) seems to over-estimate both the capacitance of
axons and how completely that capacitance is discharged when conducting an action potential,
but it will be included anyway:.

In [33]: brain_flops = np.loglO([2el6, 1el7, 1el3, 2el5, lel6, 2el6, leld, 3.6elb5])
plt.hist(brain_flops, density=True);
plt.xlabel ("FLOPS (log-scale)");
plt.ylabel("Frequency");

0.6

0.0
13.0 . . .

140 145 150 155 160
FLOPS (log-scale)

Frequency
= o =
Lu e LA

=
(N

(&

These estimates are typically generated by multiplying uncertain quantities, so we expect the
resulting distribution to resemble a mixture of Gaussians in log-space. We will use a kernel density
estimator to produce a distribution from the estimates, with the bandwidth hyperparameter tuned
empirically using cross-validation.

In [34]: from sklearn.neighbors import KernelDensity
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import LeaveOneQOut

x = np.linspace(10, 20).reshape(-1, 1)
brain_flops = brain_flops.reshape(-1, 1)

bandwidths = 10 ** np.linspace(-1, 1)

grid = GridSearchCV(KernelDensity(kernel='gaussian'),
{'bandwidth': bandwidths},
cv=LeaveOneOut ())

grid.fit(brain_flops);

bw = grid.best_params_['bandwidth']

kde = KernelDensity(bandwidth=bw, kernel='gaussian')

kde.fit(brain_flops)

brain_compute = 10%**kde.sample(n)[:,0]

plt.hist(brain_flops,

bins=5,

histtype='stepfilled',

density=True,

label="Estimates");
plt.plot(x, np.exp(kde.score_samples(x)), label="KDE");
plt.xlabel("Operations per second (log)");
plt.ylabel("Frequency");
plt.legend()
summary (brain_compute, "Operations per second")

Out [34]: Percentile Operations per second
0 1 2.926178e+11
1 5 3.113016e+12
2 25 2.307572e+14
3 50 4.015672e+15
4 75 3.945256e+16
5 95 7.642728e+17
6 99 5.129267e+18

KD E
Em Estimates

0.4

=
L

Frequency
]
P

0.1

10 12 14 16 18 20
Operations per second (log)

1.3 Subjective-Lifespan of Al

How long does each Al have to live (in subjective time) in order to become generally competent
enough to take significant strategic action in the world, and then actually take this action? This
could be comparable to human lifetimes or substantially shorter. We will err towards the side of
“substantially shorter”.

In [35]: from scipy.stats import lognorm

longevity in days
longevity = loguniform(high=2, low=-.5, size=n)

plt.hist(longevity, bins=50, log=True);
plt.xlabel('Lifetime (years)');
plt.ylabel('Frequency (log-plot)');
summary (longevity, 'Years')

Qut [35]: Percentile Years
0 1 0.334516
1 5 0.417490
2 25 1.313593
3 50 5.474537
4 75 23.136432
5 95 74.352380
6 99 93.907044

104
-
L=
=
()]
=
=
e
@ 1073
—
(=
@

|||||||II|II|||||I|.|||n.....
0 20 40 B0 80 100

Lifetime (years)

2 Comparisons to AlphaGo Zero

2.0.1 AlphaGo Zero Training Time

This model uses DeepMind’s AlphaGo Zero as a benchmark, which beat the superhuman Go Al
AlphaGo Lee 36 hours into its initial three-day training period. AlphaGo Zero played ~4.9 million

games during this period, so AlphaGo Zero obtained superhuman performance after roughly 2.5
million games.

In [36]: # number of games played by AlphaGo Zero
agz_games = 2.5e6

2.0.2 Sample Efficiency of General Intelligence Compared to Go

A ratio of one would mean that, in the future, Al researchers discover an Al architecture that is
as efficient ag learning general action in the world as AlphaZero is at learning Go. A ratio of
1000 would mean it takes 1000 times as many lifetimes per unit of learning compared with Alp-
haZero. It is plausible that useful architectures could be learned from neuroscience, although this
would require large advances in the neuroscience field (see Could a Neuroscientist Understand a
Microprocessor?). We can think of this as a difficulty ratio.

This parameter is essentially impossible to estimate in a principled way, so we’ll be a bit sloppy.
To begin thinking about this, consider that AlphaGo Zero takes as input a 19-by-19 Go board (and
the previous 16 board states). Each square can take one of three states (black, white, or empty)
and there can be at most 19 x 19 x 2 = 722 moves in a game, so each game provides at most

7

https://www.nature.com/articles/nature24270
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005268
http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005268

722 x log, (3!9*1%) ~ 4.1 x 10° bits of information. By comparison, the human optic nerve carries
~ 6 x 10° bits per second (see Raichle (2010)), or ~ 5 x 10! bits in a 24-hour period. Natural
imagery and Go boards are both highly compressible, but a difference of this size suggests that we
should probably be very surprised if the difficulty ratio were small.

It’s hard to tell whether or not our particular distribution is reasonable, but it’s worth noting
that simple neural networks have been around a very long time. Estimates derived from molecular
clock studies on homologous genes suggest that sponges, jellyfish, and cone jellies diverged in the
Mesoproterozoic over one billion years ago. Quite a lot of computation can happen over long
geological time scales.

In [37]: difficulty = loguniform(low=5, high=37, size=n)

plt.hist(difficulty, bins=50, log=True);
plt.xlabel('Difficulty Ratio');
plt.ylabel('Frequency (log-scale)');
summary(difficulty, 'Difficulty Ratio')

Out [37] : Percentile Difficulty Ratio
0 1 2.054450e+05
1 5 4.017578e+06
2 25 1.029188e+13
3 50 1.008063e+21
4 75 1.171638e+29
5 95 2.907911e+35
6 99 5.188879e+36

Frequency (log-scale)

—

10

0.0 0.2 0.4 0.5 0.8 1.0

Difficulty Ratio le37

http://www.brainm.com/software/pubs/dg/Hubs-Networks/Raichle_M.E--TwoViewof%20Brain.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1689654/

2.0.3 Number of Hyperparameter Tuning Attempts

The AlphaGo Zero paper implies that a few different variations were trained in parallel during the
initial training period, as is common practice for large deep learning projects. We should expect
something similar in the scenario under consideration.

In [38]: hyperparameters = loguniform(high=1.5, low=0, size=n)
plt.hist(hyperparameters, bins=50);
plt.xlabel ("Number of Tuning Attempts");
plt.ylabel("Frequency");
summary (hyperparameters, 'Tuning Attempts')

=

Out[38]: Percentile Tuning Attempts

0 1 1.033877
1 5 1.184992
2 25 2.368868
3 50 5.646292
4 75 13.410038
5 95 26.650292
6 99 30.568390
7000
6000
5000

-

= 4000

L

S

or

& 3000

(e
2000
o ‘IlIIII

IIIIIII'II“““lIIlIIIIIIIIllInlnn
0 5 10 15 20 25 30

Number of Tuning Attempts

2.1 Future Hardware Improvements
2.1.1 Trends in Computing Costs
While machine learning ASICs like TPUs are likely the future, the recent deep learning boom

was powered by GPUs. Commonly mentioned figures for the price-performance generalization

9

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

of Moore’s Law suggest that price-performance doubles roughly every two years, but it's worth
checking this figure against the observed price-performance changes in GPUs. The file gpu.csv
contains the model name, launch date, single precision performance in GFLOPS, and release price
in non-inflation-adjusted US dollars for 223 Nvidia and AMD GPUs (scraped from Wikipedia).
The dataset covers almost two decades, so we will need to adjust the prices for inflation using the
Consumer Price Index.

This notably neglects several important features:

* Much of the work that has been done in the past several years has been focused on reducing
energy usage, which we don’t attempt to capture with our focus on naive price-performance.

* The large proportion of the cost of running a data center today comes from electricity usage,
not fixed capital like computing hardware.

* We are not considering the costs of other components, or attempting to project changes in
their price performance.

¢ This does not consider the labor and engineering costs for such a project, which will almost
certainly be very substantial.

However, it’s an easy quantity to work with and provides some insight.

In [39]: gpu = pd.read_csv("gpu.csv")
gpul'Date'] = pd.to_datetime(gpul['Date'], infer_datetime_format=True)

cpi = pd.read_csv("cpi.csv")

cpil'Date'] = pd.to_datetime(cpi['Date'], infer_datetime_format=True)
Price multiplier to convert to 2018%

cpil'Price Multiplier'] = cpil['CPI'].iloc[-1] / cpil['CPI']

gpu = pd.merge_asof (
gpu, cpi.filter(
items=['Date', 'Price Multiplier']),
on='Date',
direction='nearest')

Adjust prices for inflation

gpul'Adjusted Price (2018%)'] = gpul'Release Price (USD)'] * gpul'Price Multiplier']
Inflation adjusted performance cost

gpul['FLOPS per 2018%'] = gpul'GFLOPS'] / gpul'Adjusted Price (2018%)'] * 10%*9

Convert dates to uniz time
time, y = gpul'Date'] .astype(np.int64) / 10**9, gpul'FLOPS per 2018$']

Linear regression in log-space
#rate, constant = np.polyfit(time, np.log(y), 1, w=np.sqrt(y))
rate, constant = np.polyfit(time, np.log(y), 1)

gpul'Fit Exponential'] = pd.Series(np.exp(constant) * np.exp(ratextime))

gpu.plot(x='Date', y=['FLOPS per 2018$', 'Fit Exponential'], style=['.','-'])
#plt.savefig('gpu_full.png')

10

https://fred.stlouisfed.org/series/CPIAUCNS

2018%'] .corr(gpul'Fit Exponential'])))

Pearson's r (correlation coefficient)
{:.3f}"' .format (gpul'FLOPS per

print('r
r=20.716
|II

1ell
« FLOPS per 2018%

0.8
Fit Exponential
f

/

04
/{&'." :. r

0.2

0.0
20 G ® ® vt e P

A
Date

This implies a doubling time of ~1.5 years.
1 / (np.log2(np.e) * rate * 3600 * 24 * 365)

In [40]: doubling_time =
print("Doubling time: {:.2f} years".format(doubling_ time))

Doubling time: 1.48 years
It should be noted that this is somewhat misleading because the price-performance curve

isn’t a clean exponential. An exponential curve appears linear in log-space, whereas the price-
performance curve is sub-linear. Inspecting a log-plot suggests that price-performance has been

in a distinctly slower growth regime since around 2012.
In [41]: gpu.plot(x='Date', y='FLOPS per 2018%', style='.', logy=True);

#plt.savefig('gpu_log.png')

11

1018 .

. FLOPS per 2018 "
. ¥ [y "‘I. "

R Lk
[] ' -h_ &
-:I. .rq * -
10° A
= -..*
Iy
1|:|-H . .
ll:l:ll - =.. -

R L S L N N Lt S
Date

Fitting a curve to data from 2012 onward yields a doubling time of ~3.9 years.

In [42]: gpu = gpulgpul'Date'] > pd.Timestamp('2012-01-01')]
Convert dates to uniz time
time, y = gpul['Date'] .astype(np.int64) / 10**9, gpul['FLOPS per 2018%']
Linear regression in log-space
rate, constant = np.polyfit(time, np.log(y), 1, w=np.sqrt(y))
gpul'Fit Exponential'] = pd.Series(np.exp(constant) * np.exp(ratextime))
Pearson's r (correlation coefficient)
gpu.plot(x='Date', y=['FLOPS per 2018$', 'Fit Exponential'], style=['.','-'])
#plt.savefig('gpu_recent.png')
print('r = {:.3f}' . format(gpul['FLOPS per 2018%'].corr(gpul'Fit Exponential'])))
doubling_time = 1 / (np.log2(np.e) * rate * 3600 * 24 * 365)
print("Doubling time: {:.2f} years".format(doubling_ time))
r = 0.673

Doubling time: 3.93 years

12

lelD
« FLOPS per 2018%

25 Fit Exponential .
2.0 . :
. & . @ L
15 . P
- & L - . l.
N L. "
[] : l. II > o & | |
1.0 e o g —H T
a B v, oo, -
-5 .. ’i e . B .' .
DS ."‘l . L™ .
:ﬁ
SR Y A o D I LA St

Date

It is unclear how long even this reduced rate of growth can continue, and these improvements
are expected to break down in the coming decades, with more than an additional 10-12 doublings
being very unlikely within the current paradigm. The question of whether and how the trend will
continue, perhaps through breakthroughs in spintronics or further improvements in 3D integrated
circuits, is beyond the scope of this document.

2.1.2 Architecture-Specific Inprovements

So far, TPUs have been one generation behind the cutting-edge of semiconductor fabrication. Pri-
vate communication with experts in the field suggests that a further one to two orders of magni-
tude of improvement in price-performance from technological progress and economies of scale is
likely, with more not being out of the question.

In [43]: tpu_improvement = loguniform(low=1, high=2.5, size=n)
plt.hist(tpu_improvement, bins=50, log=True);
plt.xlabel("Factor of Improvement");
plt.ylabel("Frequency (log-scale)");
summary (tpu_improvement, 'Factor of Improvement')

Out [43]: Percentile Factor of Improvement
0 1 10.364245
1 5 11.898779
2 25 23.586700
3 50 55.881355
4 75 132.640638

13

https://en.wikipedia.org/wiki/Spintronics
https://en.wikipedia.org/wiki/Three-dimensional_integrated_circuit
https://en.wikipedia.org/wiki/Three-dimensional_integrated_circuit

5 95 264.910053
6 99 304.889214

|||||||N"|‘||||IIIIII||||.||||....
0 50 100 150 200 250 300

Factor of Improvement

Frequency (log-scale)

2.2 Computational Requirements

The estimated computational requirements are summarized below.

In [44]: # Number of artithmetic operations to simulate a lifetime
lifetime_compute = brain_compute * longevity * 3600 * 24
Number of simulated lifetimes needed to train an AGI
lifetimes = hyperparameters * difficulty * agz_games
Number of arithmetic operations to train an AGI
agi_compute = lifetime_compute * lifetimes
plt.hist(agi_compute, bins=100, log=True);
plt.xlabel("Number of Operations");
plt.ylabel("Frequency (log-scale)");

summary (agi_compute, 'Operations')

Out [44] : Percentile Operations
0 1 1.199615e+32
1 5 4.659938e+34
2 25 1.806512e+41
3 50 1.754430e+49

14

4 75 2.146480e+57

5 95 9.705500e+63
6 99 2.164436e+66

__ 104

o

1)

E i

. 10

o

O qn2

= 10

4K}

-

D

= 1ol

10° "lll (W Il I |
0.0 0

.5 1.0 15 2.0 2.5
Mumber of Operations 1le70

2.3 Economic Considerations
2.3.1 Monetary resources available for AGI (in inflation-adjusted 2018 dollars)

The total revenue of the semi-conductor industry in 2017 was a bit over 400 billion USD and has
been increasing linearly as a function of time since the mid-1980s. This is remarkable given that
this period saw the rise of personal computing, the birth of the web, and much of the information
revolution. Extrapolating this trend suggests that the revenue won't reach one trillion USD for
more than a century. Given that we are considering costs of specific hardware components and
the time and expense associated with building new semiconductor fabs, this suggests that physical
production may impose a hard limit on how much can be spent.

In [45]: semiconductors = pd.read_csv("semiconductor.csv")
semiconductors["Date"] = pd.to_datetime(semiconductors['Date'] + 1, format="%Y")

adjust for inflation, convert to USD
semiconductors = pd.merge_asof (
semiconductors,
cpi.filter(items=['Date', 'Price Multiplier']),
on='Date',
direction='nearest')

15

semiconductors['Adjusted Sales (2018$)'] = semiconductors['Sales (Thousands of USD)']

uniz time
time = semiconductors['Date'].astype(np.int64) / 10%x9
y = semiconductors['Adjusted Sales (2018$)']

linear regression
slope, intercept = np.polyfit(time, y, 1)
semiconductors['Fit Line'] = pd.Series(intercept + slope * time)

semiconductors.plot(x='Date’,
y=['Adjusted Sales (2018$)', 'Fit Line'],
style=['."', '-'])

print('r = {:.3f}"'.format(
semiconductors['Adjusted Sales (2018%)'].corr(
semiconductors['Fit Line'])))
print("Years to reach one trillion USD: {:.2f}".format(
(1e12 - intercept) / slope / (3600%24%365)))

r = 0.957
Years to reach one trillion USD: 107.62

lell
40 * Adiusted Sales (20185))
' Fit Line ~

=
35 . "
;Jf .
-]
3.0 g A
&
-
25 7
L o -
"
s ® L
2.0 A e
=~
15 s
-]
-

1.0 PretE
0s

19490 149495 2000 2005 2010 2015
Date

16

Also worth noting is that both the Apollo Program and the Manhattan Project each cost just
under half of one percent Gross World Product, and were regarded as hugely expensive and un-
sustainable efforts.

In [46]:

Out[46]:

projects = pd.DataFrame(data={"Project":["Manhattan Project",
"Apollo Program"],
"Cost":[2e9, 25.4e9],
"Date":["1940-01-01", "1973-01-01"],
"GWP (1990%)":[4502584e6, 16022888e6]})

projects['Date'] = pd.to_datetime(projects['Date'],
infer_datetime_format=True)
projects = pd.merge_asof (projects,
cpi.filter(items=['Date', 'Price Multiplier']),
on="'Date',
direction='nearest')

projects['Cost'] = projects['Cost'] * projects['Price Multiplier']
projects['GWP (2018%)'] = (projects['GWP (1990%)'] =
float(cpilcpil'Date'] ==
'1990-01-01"'] ['Price Multiplier']))

projects['Percent of GWP'] = projects['Cost'] / projects['GWP (2018%)'] * 100
projects[['Project', 'Percent of GWP']]

Project Percent of GWP
0 Manhattan Project 0.407120
1 Apollo Program 0.474081

Gross World Product is currently estimated to be around $80 trillion and projected to be $38
trillion in 2060. Taking these numbers as a guide, it seems unlikely that expenditures would exceed
\$1 trillion before the late 21st century, and in all likelihood not even that.

In [47]:

Qut [47] :

#budget = lognorm.rvs(s=1, scale=lell, stze=n)
budget = loguniform(low=10, high=12, size=n)
plt.hist(budget, bins=50, log=True);
plt.xlabel("AGI Budget (2018%)");
plt.ylabel("Frequency (log-scale)");

summary (budget, 'AGI Budget (2018$)')

Percentile AGI Budget (2018%)
0 1 1.047156e+10
1 5 1.266899e+10
2 25 3.209692e+10
3 50 1.006332e+11
4 75 3.202036e+11
5 95 7.982820e+11
6 99 9.526886e+11

17

https://en.wikipedia.org/wiki/Apollo_program
https://en.wikipedia.org/wiki/Manhattan_Project
http://holtz.org/Library/Social%20Science/Economics/Estimating%20World%20GDP%20by%20DeLong/Estimating%20World%20GDP.htm
https://data.oecd.org/gdp/gdp-long-term-forecast.htm

104

103

Frequency (log-scale)

|‘|||““‘||||||||““|||||||IIII|I||||I|||.||.|..
0.0 02 0.4 0.6 0.8 1.0

AGI Budget (2018%) lel2

2.3.2 Hardware Price-Performance

At the time of this writing, a TPU performing 180 FLOPS can be rented at the rate of 4.5 USD per
hour.

In [48]: # Cost per hour of TPU
tpu_cost = 4.5
Computational performance of TPU
tpu_compute = 180el2
Current price-performance of ML hardware
price_performance = tpu_compute * 3600 / tpu_cost

2.3.3 Number of Doublings Required

We can now calculate the number of doublings in price-performance required to train an AGI
given our budgetary constraints.

In [49]: # Required cost efficiency of ML hardware
required_performance = agi_compute / budget
Number of doublings required for AGI to be economically feastible
doublings_required = np.log2(required_performance
/ (price_performance * tpu_improvement))
plt.hist(doublings_required,
bins=100,

18

https://cloud.google.com/tpu/docs/pricing
https://cloud.google.com/tpu/docs/pricing

histtype="stepfilled",
cumulative=True) ;
plt.xlabel("Number of Doublings Required");
plt.ylabel("Frequency");
#plt.savefig("doublings.pdf")
summary (doublings_required, 'Doublings')

Out [49] : Percentile
0 1
1 5
2 25
3 50
4 75
5 95
6 99
Soooo0
40000
)
= 30000
4K}
3
D
o 20000
10000
0

2.4 Projected Timeline

Doublings

6.
15.
37.
64.
91.

113.
121.

612339
637536
673011
201534
083337
442426
385305

20 40 &0 80 100 120 140
Number of Doublings Required

As was noted above, there is not currently an obvious path to exponential improvements in price-
performance after ~10-12 further doublings. The conclusion seems to be that this approach is
simply not viable, but if we assume that these trends (somehow) continue, we can estimate the

timeline.

In [60]: timeline = doublings_required * doubling_time
plt.hist(timeline,

19

bins=1000,
cumulative=True,
histtype="stepfilled",
density=True);
plt.xlabel("Years from Present");
plt.ylabel("Frequency");
#plt.savefig("timeline.pdf")
summary(timeline, 'Years')

Out [50] : Percentile Years
1 25.982804
5 61.446788

25 148.033909

50 252.276198

75 357.906678

95 445.765419

99 476.976503

Ok W N~ O

1.0

0.8

=
]

Frequency
]
o

0.2

0.0
0 100 200 300 400 500

Years from Present

20

	Introduction
	A Note about Uncertainty and Distributions
	Computational Performance of the Brain
	Subjective-Lifespan of AI

	Comparisons to AlphaGo Zero
	AlphaGo Zero Training Time
	Sample Efficiency of General Intelligence Compared to Go
	Number of Hyperparameter Tuning Attempts

	Future Hardware Improvements
	Trends in Computing Costs
	Architecture-Specific Improvements

	Computational Requirements
	Economic Considerations
	Monetary resources available for AGI (in inflation-adjusted 2018 dollars)
	Hardware Price-Performance
	Number of Doublings Required

	Projected Timeline

